Important Information – Please Read Before Using This Policy

These services may or may not be covered by all Medica plans. Please refer to the member’s plan document for specific coverage information. If there is a difference between this general information and the member’s plan document, the member’s plan document will be used to determine coverage. With respect to Medicare and Minnesota Health Care Programs, this policy will apply unless those programs require different coverage. Members may contact Medica Customer Service at the phone number listed on their member identification card to discuss their benefits more specifically. Providers with questions about this Medica coverage policy may call the Medica Provider Service Center toll-free at 1-800-458-5512.

Medica coverage policies are not medical advice. Members should consult with appropriate health care providers to obtain needed medical advice, care and treatment.

Coverage Policy

SHORT TERM CGM
Professional Continuous glucose Monitoring (CGM)
Professional continuous glucose monitoring is COVERED for:
- Adults and children with type 1 diabetes mellitus who have not achieved adequate glycemic control despite frequent self-monitoring of fingerstick blood glucose levels.
- Adults with type 2 insulin-dependent diabetes mellitus who have not achieved adequate glycemic control despite frequent self-monitoring of fingerstick blood glucose levels.
- Pregnant women with type 1 or 2 diabetes mellitus or gestational diabetes.

All other indications are investigative and therefore NOT COVERED.

LONG TERM CGM
Real-Time Continuous Glucose Monitoring (CGM), Non-Implantable
Real-time CGM (with or without use of an external insulin pump) using an FDA-approved device is COVERED as an adjunct to self-monitoring of blood glucose for managing Type 1 diabetes mellitus (DM) or insulin-dependent Type 2 DM when adequate metabolic control is not achieved despite frequent self-monitoring.

Real-time CGM is investigative and therefore NOT COVERED for non-FDA approved devices and/or for all other indications including, but not limited to: (1) monitoring non-insulin dependent Type 2 DM, (2) post-gastric bypass surgery glucose monitoring in nondiabetic individuals, (3) gestational diabetes, and (4) critically ill individuals in the hospital setting (e.g., on mechanical ventilation).

All real-time CGMs using fully integrated closed-loop insulin delivery systems (e.g., fully-automated closed loop mono-hormonal or bi-hormonal systems), also known as artificial pancreas, are investigative and therefore NOT COVERED.
REMOTE GLUCOSE MONITORING AND PERSONAL DATA TRACKING/MANAGEMENT
INTERFACE SYSTEMS USED WITH A CGM DEVICE
Remote glucose monitoring add-on systems (e.g., mySentry) and personal data tracking/management interface systems (e.g., the Dexcom SHARE; TheraSens FreeStyle Tracker; AccuCheck Advantage Module) used in conjunction with a real-time CGM system are considered convenience items.

Description
Professional CGM:
Professional continuous glucose monitoring measures glucose levels in the interstitial fluid beneath the surface of the skin, providing continuous information about glucose fluctuations that is not otherwise obtained with intermittent testing. The intent of professional CGM is to aid in improving overall glycemic control. These systems require a trained health care provider. Following calibration with the individual’s standard home glucose monitor, the clinician inserts the glucose sensor into the subcutaneous tissue of the abdomen, which then measures glucose in the interstitial fluid every 10 seconds. This produces averaged glucose readings (which are stored in a monitor worn by the patient) over each five-minute interval for 72 hours or more (e.g. up to seven – 14 days). Software provided with the monitor retrieves data, performs error checks, and produces an output file that is downloaded and reviewed by a clinician to identify glucose excursions and guide patient management. At the end of the testing period, the device is returned to the clinician.

Real-Time CGM:
CGM devices
Real-time CGM devices continuously monitor glucose levels within interstitial fluid via a subcutaneous sensor similar to that described above. Real-time CGM systems designed for long-term patient use are designed to display glucose measurement in real-time, thus allowing the individual to take appropriate action (e.g., adjust insulin levels) based on the available data.

Open-loop glucose monitoring and insulin delivery systems combining an external insulin pump with real-time CGM are available. The sensor communicates glucose readings to the pump using a radio transmitter. The pump is also able to calculate recommended insulin doses, which the individual can accept or modify.

Real-time CGM using Sensor-Augmented Insulin Pump Therapy (“Hybrid Closed-Loop”):
These systems are made up of the CGM and the insulin pump. They communicate with each other and have features that can be set up to automatically suspend insulin delivery when blood sugars drop below a set value. They can also increase or decrease basal insulin doses in response to glucose values trending either up or down, and/or can give alerts to the user when glucose values are outside of their normal range or in the process of trending either up or down.

Fully-automated Real-time CGM with Closed-Loop Insulin Delivery System (aka, “artificial pancreas”):
There are currently no FDA approved devices that are fully closed loop. These systems would automatically adjust insulin needs based on automated glucose readings and would not require user input. These devices may be either mono-hormonal (delivering insulin only) or bi-hormonal (delivering insulin and glucagon). Studies are currently in progress.

Personal Data Tracking/Management Systems:
Multiple types of personal data tracking technology are being purported as assistive tools providing enhanced means to help an individual with long-term diabetes management. Examples include, but are not limited to:
1. Software or hardware for downloading data from a CGM device to a computer
2. CGM devices combined with a cellular telephone or other personal digital assistant [PDA] device (e.g., the Dexcom SHARE system
3. CGM devices combined with another device not intended for diabetes management (e.g., blood pressure monitor; cholesterol screening analyzer)
4. Remote glucose monitoring systems (e.g., Medtronic’s mySentry system).
Medica Coverage Policy

By connecting an individual’s glucose monitoring device to the computer, readings can be transferred to a central database, and individuals and their clinicians can access glucose history over time. Mobile phone and other personal digital assistants (PDAs) are also being developed and marketed to store and communicate data for both clinician-directed and self-management. It is theorized that this technology could enhance diabetes management by improved food intake timing, insulin injection modifications, and adjustment to other diabetic medications.

FDA Approval
Continuous Glucose Monitors:
Many CGMs have received FDA approval. Commonly-used non-implantable real-time CGMs include, but are not limited to:
1. Dexcom G5, Dexcom G6 (Dexcom Inc.)
2. Free-Style Libre (Abbott Diabetes Care Inc.)

Personal Data Tracking/Management Systems:
The FDA issues guidance documents regarding all premarket submissions for software devices and other PDA applications. Personal data tracking systems may be cleared for marketing as part of a related medical device (e.g., glucose monitor), as an accessory to the original device, or as a separate standalone system. In general, if a device is comprised of software or is controlled by a computer, the FDA requires submission of data appropriate to the level of risk of the software. Data is to include any information, prompts, and cautions displayed by the system, and all documentation to support all performance and safety claims. Examples of FDA-approved systems include the Dexcom® Share system (Dexcom, Inc.) and Medtronic’s mySentry system.

Prior Authorization
Prior authorization is not required. However, services with specific coverage criteria may be reviewed retrospectively to determine if criteria are being met. Retrospective denial may result if criteria are not met.

Coding Considerations
Use the current applicable CPT/HCPCS code(s). The following codes are included below for informational purposes only, and are subject to change without notice. Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement.

CPT Codes:
- 95249 - Ambulatory continuous glucose monitoring of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; patient-provided equipment, sensor placement, hook-up, calibration of monitor, patient training, and printout of recording
- 95250 - Ambulatory continuous glucose monitoring of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; sensor placement, hook-up, calibration of monitor, patient training, removal of sensor, and printout of recording
- 95251 - Ambulatory continuous glucose monitoring of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; interpretation and report

HCPC Codes:
- A9276 - Sensor; invasive (e.g., subcutaneous), disposable, for use with interstitial continuous glucose monitoring system, 1 unit = 1 day supply
- A9277 - Transmitter; external, for use with interstitial continuous glucose monitoring system
- A9278 - Receiver (monitor); external, for use with interstitial continuous glucose monitoring system
- S1030 - Continuous noninvasive glucose monitoring device, purchase (for physician interpretation of data, use CPT code)
- S1031 - Continuous noninvasive glucose monitoring device, rental, including sensor, sensor replacement, and download to monitor (for physician interpretation of data, use CPT code)
S1034 - Artificial pancreas device system (e.g., low glucose suspend [LGS] feature) including continuous glucose monitor, blood glucose device, insulin pump and computer algorithm that communicates with all of the devices
S1035 - Sensor; invasive (e.g., subcutaneous), disposable, for use with artificial pancreas device system, 1 unit = 1 day supply
S1036 - Transmitter; external, for use with artificial pancreas device system
S1037 - Receiver (monitor); external, for use with artificial pancreas device system

Original Effective Date: 6/1/2013

Re-Review Date(s):
9/17/2014
1/21/2015
3/16/2016
3/28/2017 – Administrative update (addition of 670G)
1/1/2018 – Administrative update; codes added
3/20/2019